

J. F. Moreno 1751. Cdad. Mza.Tel. 4-251035. E-mail: profesoradosnolasco@gmail.com www.ispn.edu.ar

UNIDAD CURRICULAR: QUIMICA ORGÁNICA Y BIOLÓGICA		
Formato: Asignatura		
CARRERA: Profesorado de Educación Secundaria en Biología	CURSO: 1°año (2°cuatrimestre)	AÑO : 2012
PROFESORA: Dra. Raquel M. Sammartino		
Número de horas : totales: 80	semanales: 5	

Correlatividades: Para cursar 3º Año el estudiante deberá tener acr editadas las Unidades

Curriculares de 1^{er} Año.

Fundamentación

Como la Ciencia es una construcción humana y se parte de la observación que la Naturaleza y/o la experiencia ha brindado, es necesario a través de la Química, describir e interpretar las leyes que rigen a los fenómenos naturales a fin de predecir lo desconocido y experimentar sobre lo conocido, enfatizando el conocimiento de la dinámica del cambio químico.

En esta unidad curricular se proporciona al alumno una visión general de los principales tipos de compuestos orgánicos, considerando la naturaleza de los grupos funcionales y la estructura molecular como una consecuencia de las propiedades del átomo de Carbono. Se describen las propiedades físicas y químicas y los métodos de síntesis más corrientes con sus mecanismos de reacción.

En la parte experimental, se introduce al estudiante en la metodología y normas de seguridad para manipular correctamente estos compuestos, así como aquellos aparatos y equipos de uso frecuente en esta disciplina, fundamentales para las etapas de purificación de sustancias orgánicas de interés.

Todas estas prácticas son realizables en este Instituto, ya que cuenta con los recursos físicos y un laboratorio perfectamente adecuado y equipado para tal fin, al igual que con recursos humanos, como ayudante de laboratorio, que sin éste, toda esta práctica sería imposible de realizar.

Toda esta experimentación personal le permite a este alumno, futuro docente, trasladar estos procesosaprendizajes a sus alumnos, no mediante una clase simplemente teórica sino a través de clases prácticas, las cuales estimulan aún más a sus alumnos.

Además, estas prácticas de laboratorio completan a nuestro estudiante, y lo *diferencian* de los egresados de otros Institutos que no tiene la posibilidad de realizarlas.

Esta unidad curricular tiene relación directa con la Biología General, Química General e Inorgánica, Biología Celular y Molecular, Matemáticas, Física, Ciencias de la Tierra y Microbiología, etc.

Objetivos generales

- Introducir a las Ciencias Básicas en la formación de profesores de Biología, con el fin de proporcionar una formación integral en el área de Ciencias Naturales, interactuando entre los contenidos de las distintas disciplinas, para integrar los diferentes contenidos conceptuales.
- Aplicar el método científico a la resolución de problemas.
- Usar diferentes técnicas de laboratorio para identificar y separar sustancias.
- Conocer procesos metabólicos e industriales basados en el conocimiento de los cambios químicos.
- Explicar desde el nivel atómico características y propiedades de las moléculas orgánicas.
- Comprender la estructura y función de las biomoléculas que componen los seres vivos, el mecanismo por el cual las biomoléculas actúan en los procesos vitales, las vías metabólicas y su regulación.
- Comprender la relación que existe entre la estructura química de los compuestos orgánicos y su reactividad, explicando básicamente los diferentes tipos de reacciones químicas y sus mecanismos de reacción en los cuales estos participan.
- Manipular adecuadamente material instrumental de complejidad mayor.
- Estudiar cr\u00edticamente el efecto de los productos qu\u00edmicos sobre la salud, la calidad de vida y el medio ambiente.
- Valorar la capacidad de la Ciencia para dar respuesta a las necesidades de la humanidad mediante los productos químicos, alimentos, medicinas, etc.

Contenidos

Conceptuales

El Carbono como elemento central de la química orgánica

UNIDAD I: Hidrocarburos

Compuestos orgánicos e inorgánicos: diferencias y características.

Sustancias orgánicas: identificación, análisis inmediato, elemental cualitativo. Análisis de Carbono, Hidrógeno, Nitrógeno, Azufre, Halógenos y Fósforo. Método de Dumas y Liebig. Átomo de Carbono: propiedades, hibridación, cadenas carbonadas, tipos de Carbono.

Hidrocarburos: clasificación, propiedades. Alcanos, alquenos y alquinos: nomenclatura, serie homóloga, obtención, propiedades físicas y químicas, isomería. Fórmulas. Resolución de problemas. Petróleo. Polímeros Plásticos. Experiencias de laboratorio: análisis cualitativo. Material de laboratorio.

UNIDAD II: Funciones químicas oxigenadas de importancia biológica e Industrial

Alcoholes, aldehídos, cetonas, ácidos, éteres., ésteres, anhídridos: definición, obtención, nomenclatura, clasificación, serie homóloga, propiedades físicas y químicas, isomería. Reacciones de reconocimiento. Usos. Importancia biológica e industrial de: metanol, etanol, metanal, glicerina, propanona, éter etílico, ácidos en general. Obtención, usos. Isomería.

Compuestos aromáticos. Resolución de problemas y fórmulas.

Compuestos nitrogenados: aminas, amidas y nitrilos.

Aminoácidos: composición química, fórmulas, nomenclatura, clasificación, propiedades físicas y químicas. Enlace peptídico. Importancia de los aminoácidos.

Composición y estructura química de la materia viva.

UNIDAD III: Lípidos

Definición. Clasificación. Grasas, aceites y ceras. Propiedades físicas de cada uno. Propiedades químicas: hidrólisis, saponificación, hidrogenación. Rancidez. Índice de Yodo. Índice de saponificación. Jabones. Lípidos simples, complejos y asociados: Fosfolípidos, terpenos y esteroides. Metabolismo, absorción y digestión de grasas.

UNIDAD IV: Aminoácidos, proteínas y ácidos nucleicos

Proteínas: composición química, estado natural, peso molecular, reacciones generales. Metabolismo de las proteínas.

Enzimas: naturaleza química. Cinética enzimática. Importancia biológica.

Ácidos nucleicos: estructura, características. Bases nitrogenadas. Nucleósidos y nucleótidos más comunes.

ADN y ARN: estructura molecular. Funciones del ADN.

Vitaminas. Hormonas. Función e importancia biológica. Metabolismo.

UNIDAD V: Hidratos de Carbono o Glúcidos

Definición, clasificación y nomenclatura. Principales azúcares. Glucosa: obtención, fórmulas abiertas y cerradas. Fructosa. Disacáridos: fórmulas, estructura, obtención, importancia biológica. Polisacáridos: almidón, celulosa, fórmulas, hidrólisis. Metabolismo de los glúcidos.

Compuestos orgánicos en el medio biológico y del entorno.

UNIDAD VI: Desarrollados en cada una de las unidades según corresponde.

Procedimentales

- Elaboración de modelos que ejemplifiquen la estructura de las moléculas.
- Formulación de preguntas y explicaciones provisorias.
- Realización de actividades experimentales en laboratorio.
- Recapitulación de información sobre diversos modelos atómicos y otras teorías científicas.
- Organización y coordinación de tareas grupales para la resolución de problemas en el aula y en el laboratorio.
- Resolución de ejercicios de aplicación de hidrocarburos, alcoholes, aldehídos, ácidos, cetonas, hidratos de carbono, lípidos, etc.
- Participación y elaboración de informes luego de una práctica experimental de laboratorio.
- Investigación en material bibliográfico especializado.

Actitudinales

- Responsabilidad y respeto a la vida humana y a los seres vivos en general.
- Acercamiento del conocimiento científico a situaciones reales de la vida.
- Uso adecuado del material de laboratorio trabajando con orden y limpieza.
- Identificación y análisis de procesos involucrados en distintas transformaciones químicas, síntesis y degradación de biomoléculas.
- Interpretación del informe de laboratorio, comparación de técnicas y demostración de procesos químicos.

• Valoración de los métodos de investigación como marco adecuado para avanzar en la comprensión de problemas y planteo de alternativas.

Estrategias metodológicas

La metodología a utilizar será analítica, experimental y demostrativa. Actividades en clase:

Se respetará la diversidad de los alumnos, ya que el grupo es muy heterogéneo en cuanto a los pre-saberes. No puede ser, por tanto, homogeneizante.

Se partirá de los conocimientos que los alumnos tienen sobre el tema a introducir, teniendo en cuenta los conceptos adquiridos en Química General e Inorgánica, los cuales son fundamentales para la comprensión de este espacio curricular.

Se tratará que los alumnos relacionen los nuevos conceptos entre sí con los ya adquiridos y con los de otras asignaturas como: Química General e Inorgánica, Biología, Matemáticas, Física, Ciencias de la Tierra, etc.

Se permitirá que los alumnos debatan, contrasten sus ideas y reflexionen para que puedan establecer hipótesis que posteriormente puedan verificar.

Se fomentará el trabajo en equipo con el fin de que incorporen con naturalidad algunas actitudes importantes tanto para su integración social como para su posible trabajo, ya sea científico o docente. Las actividades experimentales propuestas para ser realizadas en el laboratorio son un buen procedimiento para ello.

Se orientará la elaboración de conclusiones por parte de los alumnos ayudándolos a que interpreten hipótesis y explicaciones sugeridas por la docente.

Los días martes se dictarán clases teóricas y prácticas: resolución de ejercicios y problemas, dudas de prácticos, formuleo, nomenclatura, etc. y/ o se realizarán trabajos de práctica Experimental en el laboratorio.

- En estas horas se desarrollarán los contenidos, con una introducción del tema, con el objeto de motivar a los alumnos y predisponerlos mentalmente para abordar y simular los temas, basándose siempre en los conocimientos que ya poseen en sus experiencias previas.
- Se desarrollarán los contenidos con máxima claridad expositiva y lenguaje sencillo pero utilizando términos científicos de uso ineludible. Luego se desarrollarán actividades con ejemplos de la vida diaria orientados a la Biología.
- Se desarrollarán actividades y resolución de problemas para aplicar los conocimientos teóricos adquiridos en las clases teóricas.

Actividades en el laboratorio

También se harán trabajos experimentales en el laboratorio utilizando una metodología experimental - demostrativa con el fin de:

- 1) Introducir al alumno en las técnicas del trabajo de investigación, despertando la curiosidad e interés por este tipo de procesos.
- 2) que los alumnos no repitan de memoria procesos o leyes sin sentido, sino que los aprendan por deducción propia y razonada, a la vez que ellos mismos los demuestren con las experiencias realizadas en laboratorio.
- 3) que los alumnos aprendan a usar los elementos de laboratorio, reactivos, drogas, aparatos, etc.
- 4) que los alumnos aprendan a realizar y presentar en tiempo y en forma un informe correspondiente a dicha práctica.

Actividades extraclase:

Los alumnos resolverán en sus casas una serie de problemas y ejercicios semejantes a los dados en clase. Ejercitarán los problemas más dificultosos con el fin de que en la próxima clase (martes) revisarlos y salvar todas las dudas.

Buscarán información, ejemplos de la vida diaria, aplicaciones de los conocimientos dados en teoría con respecto a la Biología, medio ambiente, industria, etc.

Se realizaran trabajos de interacciones de sistemas naturales y artificiales a través de la plataforma virtual.(Unidad VI)

Nota : En este ciclo lectivo, las horas presenciales se dan todas frente a alumnos y dentro del horario escolar, quedando las horas de consulta a disposición horaria de la docente .

Evaluación

Se evaluarán durante el curso de la unidad curricular:

1. los Trabajos Prácticos de aula, extra-clase y de laboratorio con su respectivo informe. (100% de los Trabajos Prácticos).

- Se realizará evaluación continua de proceso con auto evaluaciones, co evaluaciones, y heteroevaluaciones.
- 3. Se tomarán dos parciales.

Para obtener la regularidad, los alumnos deberán:

- 1) aprobar: todos los trabajos prácticos de aula, extra -clase y laboratorio.
- 2) asistencia 100%: a trabajos prácticos de laboratorio.
- 3) asistencia 60%: a clases teóricas.
- 4) aprobar 2 (dos) parciales escritos individuales teórico-prácticos. Existirá instancia de recuperación para uno de los dos parciales. Caso contrario pasa a la instancia global.

El alumno podrá estar ausente sólo en uno de los dos parciales, justificado con certificado médico, dentro de las 48 hs. de la fecha del parcial.

La evaluación final (examen regular y libre) es coherente con el formato de "Asignatura", integrada por un tribunal, basado en el programa de estudio y bibliografía recomendada.

Se tendrá en cuenta el dominio de la teoría, la integración de conceptos, la solvencia expositiva y uso de terminología científica.

El examen regular se desarrolla en dos etapas:

- 1) evaluación de la parte práctica: resolución de problemas o desarrollo de un práctico de laboratorio. Es eliminatoria.
- 2) se evalúan diversos temas de la asignatura a programa abierto. En todos los casos se evalúa la totalidad del Programa, Trabajos Prácticos de Laboratorio, Aula y extra-clase.

Aquellos alumnos que no hayan cumplimentado las condiciones de regularidad de la unidad curricular deberán rendir examen libre:

- 1) escrito: basado en el programa de la materia, trabajos prácticos y bibliografía recomendada.
- 2) oral: aprobado el examen escrito pasará a una segunda instancia que es el examen oral.

Bibliografía

- 1-Chang, Raymond: "Química", Buenos Aires, (Mac Graw Hill), 1.999.
- 2- Noller. A.C: "Química orgánica."
- 3- Schaum: "Series de problemas de química", Buenos Aires (MacGraw-Hill).
- 4- Ibarz, José "Problemas de Química General. Buenos Aires.Ed .Marín 1.972.
- 5- Niemeyer, H "Bioquímica " Ed. Omega.
- 6- Bonner W.A Castro A.J. "Química orgánica Básica". Ed. Alhambra.
- 7- Leningher, A.L. Bioquímica. Ed. Interamericana
- 8- Malaher, H.R. Cordes, E.H "Química biológica. Ed. Omega."
- 9- Blanco A. "Química Biológica."
- 10- Babor, Ibarz, "Química General Moderna", Buenos Aires, Editorial Marín, 1972.
- 11- Fernández Serventi .H. "Química orgánica". Ed. Losada S.A.
- 12 Biasoli ,G.A, Weitz C.S, Chandias D.O.T. "Quimica orgánica". Ed. Kapelusz.

